Differences in ventricular wall composition may explain inter-patient variability in the ECG response to variations in serum potassium and calcium
Resumen: Objective: Chronic kidney disease patients have a decreased ability to maintain normal electrolyte concentrations in their blood, which increases the risk for ventricular arrhythmias and sudden cardiac death. Non-invasive monitoring of serum potassium and calcium concentration, [K + ] and [Ca 2+ ], can help to prevent arrhythmias in these patients. Electrocardiogram (ECG) markers that significantly correlate with [K + ] and [Ca 2+ ] have been proposed, but these relations are highly variable between patients. We hypothesized that inter-individual differences in cell type distribution across the ventricular wall can help to explain this variability.Methods: A population of human heart-torso models were built with different proportions of endocardial, midmyocardial and epicardial cells. Propagation of ventricular electrical activity was described by a reaction-diffusion model, with modified Ten Tusscher-Panfilov dynamics. [K + ] and [Ca 2+ ] were varied individually and in combination. Twelve-lead ECGs were simulated and the width, amplitude and morphological variability of T waves and QRS complexes were quantified.Results: Both simulations and patients data showed that most of the analyzed T wave and QRS complex markers correlated strongly with [K + ] (absolute median Pearson correlation coefficients, r, ranging from 0.68 to 0.98) and [Ca 2+ ] (ranging from 0.70 to 0.98). The same sign and similar magnitude of median r was observed in the simulations and the patients. Different cell type distributions in the ventricular wall led to variability in ECG markers that was accentuated at high [K + ] and low [Ca 2+ ], in agreement with the larger variability between patients measured at the onset of HD. The simulated ECG variability explained part of the measured inter-patient variability.
Idioma: Inglés
DOI: 10.3389/fphys.2023.1060919
Año: 2023
Publicado en: Frontiers in physiology 14 (2023), 1060919 [14 pp.]
ISSN: 1664-042X

Factor impacto JCR: 3.2 (2023)
Categ. JCR: PHYSIOLOGY rank: 24 / 85 = 0.282 (2023) - Q2 - T1
Factor impacto CITESCORE: 6.5 - Physiology (medical) (Q2) - Physiology (Q2)

Factor impacto SCIMAGO: 1.006 - Physiology (medical) (Q2) - Physiology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP141-21
Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP94_21
Financiación: info:eu-repo/grantAgreement/ES/DGA/T39-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104881RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-105674RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-140556OB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-12:11:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-07-11, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)