Analysis of Varroa Mite Colony Infestation Level Using New Open Software Based on Deep Learning Techniques
Resumen: Varroa mites, scientifically identified as Varroa destructor, pose a significant threat to beekeeping and cause one of the most destructive diseases affecting honey bee populations. These parasites attach to bees, feeding on their fat tissue, weakening their immune systems, reducing their lifespans, and even causing colony collapse. They also feed during the pre-imaginal stages of the honey bee in brood cells. Given the critical role of honey bees in pollination and the global food supply, controlling Varroa mites is imperative. One of the most common methods used to evaluate the level of Varroa mite infestation in a bee colony is to count all the mites that fall onto sticky boards placed at the bottom of a colony. However, this is usually a manual process that takes a considerable amount of time. This work proposes a deep learning approach for locating and counting Varroa mites using images of the sticky boards taken by smartphone cameras. To this end, a new realistic dataset has been built: it includes images containing numerous artifacts and blurred parts, which makes the task challenging. After testing various architectures (mainly based on two-stage detectors with feature pyramid networks), combination of hyperparameters and some image enhancement techniques, we have obtained a system that achieves a mean average precision (mAP) metric of 0.9073 on the validation set.
Idioma: Inglés
DOI: 10.3390/s24123828
Año: 2024
Publicado en: Sensors 24, 12 (2024), 3828
ISSN: 1424-8220

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-112673RB-I00
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-116641GB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/A07_23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2019-106570RB-I00-AEI-10.13039-501100011033
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-123219OB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Producción Animal (Dpto. Produc.Animal Cienc.Ali.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-11-08:37:41)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-07-11, última modificación el 2024-07-11


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)