000136137 001__ 136137
000136137 005__ 20240719195437.0
000136137 0247_ $$2doi$$a10.1016/j.geomphys.2024.105265
000136137 0248_ $$2sideral$$a139126
000136137 037__ $$aART-2024-139126
000136137 041__ $$aeng
000136137 100__ $$0(orcid)0000-0003-0694-155X$$aAlonso, José Luis$$uUniversidad de Zaragoza
000136137 245__ $$aGeometric flavours of quantum field theory on a Cauchy hypersurface. Part II: Methods of quantization and evolution
000136137 260__ $$c2024
000136137 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136137 5203_ $$aIn this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case
000136137 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-123251NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E48-23R$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033
000136137 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000136137 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136137 700__ $$0(orcid)0000-0003-1697-5710$$aBouthelier-Madre, Carlos
000136137 700__ $$0(orcid)0000-0003-4721-7381$$aClemente-Gallardo, Jesús$$uUniversidad de Zaragoza
000136137 700__ $$0(orcid)0000-0002-6044-0337$$aMartínez-Crespo, David$$uUniversidad de Zaragoza
000136137 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000136137 773__ $$g203 (2024), 41 pp.$$pJ. geom. phys.$$tJOURNAL OF GEOMETRY AND PHYSICS$$x0393-0440
000136137 8564_ $$s1001253$$uhttps://zaguan.unizar.es/record/136137/files/texto_completo.pdf$$yVersión publicada
000136137 8564_ $$s1780039$$uhttps://zaguan.unizar.es/record/136137/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136137 909CO $$ooai:zaguan.unizar.es:136137$$particulos$$pdriver
000136137 951__ $$a2024-07-19-18:27:57
000136137 980__ $$aARTICLE