Geometric flavours of quantum field theory on a Cauchy hypersurface. Part II: Methods of quantization and evolution
Resumen: In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case
Idioma: Inglés
DOI: 10.1016/j.geomphys.2024.105265
Año: 2024
Publicado en: JOURNAL OF GEOMETRY AND PHYSICS 203 (2024), 41 pp.
ISSN: 0393-0440

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-123251NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-19-18:27:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-07-19, última modificación el 2024-07-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)