BCIM: Efficient Implementation of Binary Neural Network Based on Computation in Memory
Resumen: Applications of Binary Neural Networks (BNNs) are promising for embedded systems with hard constraints on energy and computing power. Contrary to conventional neural networks using floating-point datatypes, BNNs use binarized weights and activations to reduce memory and computation requirements. Memristors, emerging non-volatile memory devices, show great potential as a target implementation platform for BNNs by integrating storage and compute units. However, the efficiency of this hardware highly depends on how the network is mapped and executed on these devices. In this paper, we propose an efficient implementation of XNOR-based BNN to maximize parallelization. In this implementation, costly analog-to-digital converters are replaced with sense amplifiers with custom reference(s) to generate activation values. Besides, a novel mapping is introduced to minimize the overhead of data communication between convolution layers mapped to different memristor crossbars. This comes with extensive analytical and simulation-based analysis to evaluate the implication of different design choices considering the accuracy of the network. The results show that our approach achieves up to 5 × energy-saving and 100 × improvement in latency compared to baselines.
Idioma: Inglés
DOI: 10.1109/TETC.2024.3406628
Año: 2024
Publicado en: IEEE Transactions on Emerging Topics in Computing 13, 2 (2024), 395 - 408
ISSN: 2168-6750

Factor impacto JCR: 5.4 (2024)
Categ. JCR: TELECOMMUNICATIONS rank: 28 / 120 = 0.233 (2024) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 42 / 258 = 0.163 (2024) - Q1 - T1

Factor impacto SCIMAGO: 1.284 - Computer Science (miscellaneous) (Q1) - Information Systems (Q1) - Human-Computer Interaction (Q1) - Computer Science Applications (Q1)

Tipo y forma: Artículo (PostPrint)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-11-13-15:00:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-07-19, última modificación el 2025-11-13


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)