Stability of Fixed Points of Partial Contractivities and Fractal Surfaces
Resumen: In this paper, a large class of contractions is studied that contains Banach and Matkowski maps as particular cases. Sufficient conditions for the existence of fixed points are proposed in the framework of b-metric spaces. The convergence and stability of the Picard iterations are analyzed, giving error estimates for the fixed-point approximation. Afterwards, the iteration proposed by Kirk in 1971 is considered, studying its convergence, stability, and error estimates in the context of a quasi-normed space. The properties proved can be applied to other types of contractions, since the self-maps defined contain many others as particular cases. For instance, if the underlying set is a metric space, the contractions of type Kannan, Chatterjea, Zamfirescu, Ćirić, and Reich are included in the class of contractivities studied in this paper. These findings are applied to the construction of fractal surfaces on Banach algebras, and the definition of two-variable frames composed of fractal mappings with values in abstract Hilbert spaces.
Idioma: Inglés
DOI: 10.3390/axioms13070474
Año: 2024
Publicado en: Axioms 13, 7 (2024), 474 [17 pp.]
ISSN: 2075-1680

Factor impacto JCR: 1.6 (2024)
Categ. JCR: MATHEMATICS, APPLIED rank: 98 / 343 = 0.286 (2024) - Q2 - T1
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-09-22-14:34:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-09-06, última modificación el 2025-09-23


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)