Cyclic coverings of rational normal surfaces which are quotients of a product of curves
Resumen: This paper deals with cyclic covers of a large family of rational normal surfaces that can also be described as quotients of a product, where the factors are cyclic covers of algebraic curves. We use a generalization of the Esnault–Viehweg method to show that the action of the monodromy on the first Betti group of the covering (and its Hodge structure) splits as a direct sum of the same data for some specific cyclic covers over P1.
This has applications to the study of Lˆe–Yomdin surface singularities, in particular to the action of the monodromy on the mixed Hodge structure, as well as to isotrivial fibered surfaces.

Idioma: Inglés
DOI: 10.5565/PUBLMAT6822402
Año: 2024
Publicado en: Publicacions Matematiques 68, 2 (2024), 359-406
ISSN: 0214-1493

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-034300-I
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-09-06-10:25:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-09-06, last modified 2024-09-06


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)