A Robust Wind Turbine Component Health Status Indicator
Resumen: Wind turbine components’ failure prognosis allows wind farm owners to apply predictive maintenance techniques to their fleets. Determining the health status of a turbine’s component typically requires verifying many variables that should be monitored simultaneously. The scope of this study is the selection of the more relevant variables and the generation of a health status indicator (Failure Index) to be considered as a decision criterion in Operation and Maintenance activities. The proposed methodology is based on Gaussian Mixture Copula Models (GMCMs) combined with a smoothing method (Cubic spline smoothing) to define a component’s health index based on the previous behavior and relationships between the considered variables. The GMCM allows for determining the component’s status in a multivariate environment, providing the selected variables’ joint probability and obtaining an easy-to-track univariate health status indicator. When the health of a component is degrading, anomalous behavior becomes apparent in certain Supervisory Control and Data Acquisition (SCADA) signals. By monitoring these SCADA signals using this indicator, the proposed anomaly detection method could capture the deviations from the healthy working state. The resulting indicator shows whether any failure is likely to occur in a wind turbine component and would aid in a preventive intervention scheduling.
Idioma: Inglés
DOI: 10.3390/app14167256
Año: 2024
Publicado en: Applied Sciences (Switzerland) 14, 16 (2024), 7256 [29 pp.]
ISSN: 2076-3417

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-09-20-13:01:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-09-20, última modificación el 2024-09-20


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)