A semi-supervised algorithm for detecting extremism propaganda diffusion on social media
Resumen: Extremist online networks reportedly tend to use Twitter and other Social Networking Sites (SNS) in order to issue propaganda and recruitment statements. Traditional machine learning models may encounter problems when used in such a context, due to the peculiarities of microblogging sites and the manner in which these networks interact (both between themselves and with other networks). Moreover, state-of-the-art approaches have focused on non-transparent techniques that cannot be audited; so, despite the fact that they are top performing techniques, it is impossible to check if the models are actually fair. In this paper, we present a semi-supervised methodology that uses our Discriminatory Expressions algorithm for feature selection to detect expressions that are biased towards extremist content (Francisco and Castro 2020). With the help of human experts, the relevant expressions are filtered and used to retrieve further extremist content in order to iteratively provide a set of relevant and accurate expressions. These discriminatory expressions have been proved to produce less complex models that are easier to comprehend, and thus improve model transparency. In the following, we present close to 70 expressions that were discovered by using this method alongside the validation test of the algorithm in several different contexts.
Idioma: Inglés
DOI: 10.1075/ps.21009.fra
Año: 2022
Publicado en: Pragmatics and society 13, 3 (2022), 532-554
ISSN: 1878-9714

Factor impacto JCR: 0.8 (2022)
Categ. JCR: LINGUISTICS rank: 126 / 193 = 0.653 (2022) - Q3 - T2
Factor impacto CITESCORE: 1.3 - Arts and Humanities (Q1) - Social Sciences (Q2)

Factor impacto SCIMAGO: 0.434 - Linguistics and Language (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-081202
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FFI2016-79748-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Filología Inglesa (Dpto. Filolog.Inglesa y Alema.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-10-03-08:55:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-10-03, última modificación el 2024-10-03


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)