Fabrication and thermoelectric properties of multilayer textured Sr-doped Ca3Co4O9/Ag laminar composites
Resumen: This work presents a comparative analysis of pure and Ag-intercalated Ca3Co4O9 multilayer thermoelectric materials prepared through the hot-uniaxial pressing technique. Samples were prepared by attrition milling and hot-pressed at 900 °C and 55 MPa for 1 h. They were mirror polished, and some of them were stacked with and without intermediate Ag foil and hot-pressed again at 900 °C and 52 MPa for 1 h. Out-of-plane XRD showed that samples are nearly single-phase, and the grains are well oriented with their ab-plane perpendicular to the pressure direction. Microstructural studies confirmed perfect welding in the multilayer samples accompanied by the formation of a very thin layer containing larger grains and notable Ag diffusion close to the Ca3Co4O9/Ag interface. Three-point bending stresses have been increased in Ag-containing samples, while microhardness has been raised in all samples hot-pressed twice. Thermoelectric measurements showed a decrease of thermal gradient along the Ag-containing sample, together with a drastic decrease of electrical resistivity when compared to the Ag-free ones. However, the Ag-layers have promoted a drastic decrease in the Seebeck coefficient, reflected in a notable reduction of the power factor of Ca3Co4O9/Ag multilayer composites. Nevertheless, these results show that it is possible to use these materials to reduce Joule heating and increasing the compatibility with the welding compounds when building thermoelectric modules. Moreover, they open a new research line searching for larger S compounds to be intercalated with Ag foils.
Idioma: Inglés
DOI: 10.1016/j.ceramint.2024.09.030
Año: 2024
Publicado en: Ceramics International (2024), [7 pp.]
ISSN: 0272-8842

Financiación: info:eu-repo/grantAgreement/ES/DGA/T54-23R
Financiación: info:eu-repo/grantAgreement/ES/UZ/UZ2022-IAR-09
Tipo y forma: Article (Published version)
Área (Departamento): Área Expresión Gráfica en Ing. (Dpto. Ingeniería Diseño Fabri.)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-10-03-08:56:52)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ciencia de los Materiales e Ingeniería Metalúrgica
Articles > Artículos por área > Expresión Gráfica de la Ingeniería



 Record created 2024-10-03, last modified 2024-10-03


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)