Resumen: In recent years, there has been extensive research within the scientific community on deep eutectic systems due to their remarkable versatility in solubilizing diverse substances and serving as effective solvents in catalytic processes. While initially regarded as non-toxic, a comprehensive toxicological assessment is essential to comprehend their behavior within organisms. In this study, seven distinct systems, composed of N,N,N-triethyl-N-(2,3-dihydroxypropyl)ammonium chloride (N00Cl) and glycerol-derived ethers with alkyl chains of varying lengths (100, 200, 3F00, 300, 3i00, and 400), in a 1:2 molar ratio were investigated for their aquatic toxicity in shrimp (Palaemon varians). The assessment involved analyzing oxidative stress biomarkers such as glutathione S-transferase, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity (TAC), and lipoperoxidation (MDA content). Results show an odd–even effect for LC50 values being N00Cl-300, the system showing higher values. Regarding oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidant capacity in the organisms has been observed, suggesting significant toxicity to shrimps due to the changes in oxidative stress biomarkers at high concentrations. However, at 100 mg/l all systems can be considered environmentally safe, and no negative impacts are expected on aquatic ecosystems. Idioma: Inglés DOI: 10.1007/s11356-024-34983-3 Año: 2024 Publicado en: Environmental Science and Pollution Research 31, 47 (2024), 57959-57972 ISSN: 0944-1344 Financiación: info:eu-repo/grantAgreement/ES/DGA/B58-23R Financiación: info:eu-repo/grantAgreement/ES/DGA/E37-23R Financiación: info:eu-repo/grantAgreement/EC/H2020/725034/EU/ When solids become liquids: natural deep eutectic solvents for chemical process engineering/Des.solve Financiación: info:eu-repo/grantAgreement/ES/MINECO/PID2020-125762NB-I00 Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)