Resumen: Phonon polaritons – quasiparticles formed by strong coupling of infrared (IR) light with lattice vibrations in polar materials – can be utilized for surface-enhanced infrared absorption (SEIRA) spectroscopy and even for vibrational strong coupling with nanoscale amounts of molecules. Here, we introduce and demonstrate a compact on-chip phononic SEIRA spectroscopy platform, which is based on an h-BN/graphene/h-BN heterostructure on top of a metal split-gate creating a p-n junction in graphene. The metal split-gate concentrates the incident light and launches hyperbolic phonon polaritons (HPhPs) in the heterostructure, which serves simultaneously as SEIRA substrate and room-temperature infrared detector. When thin organic layers are deposited directly on top of the heterostructure, we observe a photocurrent encoding the layer’s molecular vibrational fingerprint, which is strongly enhanced compared to that observed in standard far-field absorption spectroscopy. A detailed theoretical analysis supports our results, further predicting an additional sensitivity enhancement as the molecular layers approach deep subwavelength scales. Future on-chip integration of infrared light sources such as quantum cascade lasers or even electrical generation of the HPhPs could lead to fully on-chip phononic SEIRA sensors for molecular and gas sensing. Idioma: Inglés DOI: 10.1038/s41467-024-53182-9 Año: 2024 Publicado en: Nature communications 15 (2024), 8907 [10 pp.] ISSN: 2041-1723 Factor impacto JCR: 15.7 (2024) Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 10 / 135 = 0.074 (2024) - Q1 - T1 Factor impacto CITESCORE: 23.4 - Physics and Astronomy (all) (Q1) - Multidisciplinary (Q1) - Biochemistry, Genetics and Molecular Biology (all) (Q1) - Chemistry (all) (Q1)