000146913 001__ 146913
000146913 005__ 20251107103407.0
000146913 0247_ $$2doi$$a10.1007/s11117-024-01093-w
000146913 0248_ $$2sideral$$a140747
000146913 037__ $$aART-2024-140747
000146913 041__ $$aeng
000146913 100__ $$aAnsorena, José L.
000146913 245__ $$aUnconditional basic sequences in function spaces with applications to Orlicz spaces
000146913 260__ $$c2024
000146913 5060_ $$aAccess copy available to the general public$$fUnrestricted
000146913 5203_ $$aWe find conditions on a function space that ensure that it behaves as an -space in the sense that any unconditional basis of a complemented subspace of either is equivalent to the unit vector system of or has a subbasis equivalent to a disjointly supported basic sequence. This dichotomy allows us to classify the symmetric basic sequences of . Several applications to Orlicz function spaces are provided.
000146913 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E48-23R
000146913 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000146913 590__ $$a0.9$$b2024
000146913 592__ $$a0.694$$b2024
000146913 591__ $$aMATHEMATICS$$b159 / 483 = 0.329$$c2024$$dQ2$$eT1
000146913 593__ $$aMathematics (miscellaneous)$$c2024$$dQ1
000146913 593__ $$aTheoretical Computer Science$$c2024$$dQ2
000146913 593__ $$aAnalysis$$c2024$$dQ2
000146913 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000146913 700__ $$0(orcid)0000-0001-6249-9247$$aBello, Glenier$$uUniversidad de Zaragoza
000146913 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000146913 773__ $$g29, 1 (2024), 1-36$$pPositivity$$tPOSITIVITY$$x1385-1292
000146913 8564_ $$s518929$$uhttps://zaguan.unizar.es/record/146913/files/texto_completo.pdf$$yVersión publicada
000146913 8564_ $$s1078944$$uhttps://zaguan.unizar.es/record/146913/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000146913 909CO $$ooai:zaguan.unizar.es:146913$$particulos$$pdriver
000146913 951__ $$a2025-11-07-10:32:17
000146913 980__ $$aARTICLE