Physics-informed and graph neural networks for enhanced inverse analysis
Financiación H2020 / H2020 Funds
Resumen: Purpose : This paper presents an original approach for learning models, partially known, of particular interest when performing source identification or structural health monitoring. The proposed procedures employ some amount of knowledge on the system under scrutiny as well as a limited amount of data efficiently assimilated.

Design/methodology/approach : Two different formulations are explored. The first, based on the use of informed neural networks, leverages data collected at specific locations and times to determine the unknown source term of a parabolic partial differential equation. The second procedure, more challenging, involves learning the unknown model from a single measured field history, enabling the localization of a region where material properties differ.

Findings: Both procedures assume some kind of sparsity, either in the source distribution or in the region where physical properties differ. This paper proposed two different neural approaches able to learn models in order to perform efficient inverse analyses.Originality/valueTwo original methodologies are explored to identify hidden property that can be recovered with the right usage of data. Both methodologies are based on neural network architecture.

Originality/value : Two original methodologies are explored to identify hidden property that can be recovered with the right usage of data. Both methodologies are based on neural network architecture.

Idioma: Inglés
DOI: 10.1108/EC-12-2023-0958
Año: 2024
Publicado en: ENGINEERING COMPUTATIONS (2024), [29 pp.]
ISSN: 0264-4401

Factor impacto JCR: 1.9 (2024)
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 66 / 175 = 0.377 (2024) - Q2 - T2
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 52 / 136 = 0.382 (2024) - Q2 - T2
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 121 / 175 = 0.691 (2024) - Q3 - T3
Categ. JCR: MECHANICS rank: 100 / 171 = 0.585 (2024) - Q3 - T2

Factor impacto SCIMAGO: 0.393 - Engineering (miscellaneous) (Q2) - Software (Q3) - Computational Theory and Mathematics (Q3) - Computer Science Applications (Q3)

Financiación: info:eu-repo/grantAgreement/EC/H2020/956401/EU/Cross-scale concurrent material-structure design using functionally-graded 3D-printed matematerials/XS-Meta
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-11-21-14:41:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Registro creado el 2024-11-29, última modificación el 2025-11-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)