Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions
Resumen: The integral ∫∞0()()/ (−) plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable s, or for small values of the variables r and R. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.
Idioma: Inglés
DOI: 10.1016/j.cam.2024.116395
Año: 2025
Publicado en: Journal of Computational and Applied Mathematics 460 (2025), 116395 [9 pp.]
ISSN: 0377-0427

Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-12-12-12:44:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2024-12-12, last modified 2024-12-12


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)