000147214 001__ 147214
000147214 005__ 20241216115435.0
000147214 0247_ $$2doi$$a10.1021/nn505468v
000147214 0248_ $$2sideral$$a89780
000147214 037__ $$aART-2015-89780
000147214 041__ $$aeng
000147214 100__ $$aPérez-Hernández, M.
000147214 245__ $$aDissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms
000147214 260__ $$c2015
000147214 5203_ $$aThe photothermal response of plasmonic nanomaterials can be exploited for a number of biomedical applications in diagnostics (biosensing and optoacoustic imaging) and therapy (drug delivery and photothermal therapy). The most common cellular response to photothermal cancer treatment (ablation of solid tumors) using plasmonic nanomaterials is necrosis, a process that releases intracellular constituents into the extracellular milieu producing detrimental inflammatory responses. Here we report the use of laser-induced photothermal therapy employing gold nanoprisms (NPRs) to specifically induce apoptosis in mouse embryonic fibroblast cells transformed with the SV40 virus. Laser-irradiated "hot" NPRs activate the intrinsic/mitochondrial pathway of apoptosis (programmed cell death), which is mediated by the nuclear-encoded proteins Bak and Bax through the activation of the BH3-only protein Bid. We confirm that an apoptosis mechanism is responsible by showing how the NPR-mediated cell death is dependent on the presence of caspase-9 and caspase-3 proteins. The ability to selectively induce apoptotic cell death and to understand the subsequent mechanisms provides the foundations to predict and optimize NP-based photothermal therapy to treat cancer patients suffering from chemo- and radioresistance
000147214 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-26851-CO2-01$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-26851-CO2-02
000147214 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000147214 590__ $$a13.334$$b2015
000147214 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b8 / 162 = 0.049$$c2015$$dQ1$$eT1
000147214 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b9 / 270 = 0.033$$c2015$$dQ1$$eT1
000147214 591__ $$aCHEMISTRY, PHYSICAL$$b6 / 144 = 0.042$$c2015$$dQ1$$eT1
000147214 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b4 / 82 = 0.049$$c2015$$dQ1$$eT1
000147214 592__ $$a6.712$$b2015
000147214 593__ $$aEngineering (miscellaneous)$$c2015$$dQ1
000147214 593__ $$aPhysics and Astronomy (miscellaneous)$$c2015$$dQ1
000147214 593__ $$aNanoscience and Nanotechnology$$c2015$$dQ1
000147214 593__ $$aMaterials Science (miscellaneous)$$c2015$$dQ1
000147214 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147214 700__ $$0(orcid)0000-0002-1477-5259$$aDel Pino, P.
000147214 700__ $$0(orcid)0000-0003-4848-414X$$aMitchell, S. G.
000147214 700__ $$0(orcid)0000-0002-2861-2469$$aMoros, M.
000147214 700__ $$0(orcid)0000-0002-4170-7999$$aStepien, G.
000147214 700__ $$aPelaz, B.
000147214 700__ $$aParak, W. J.
000147214 700__ $$0(orcid)0000-0001-6928-5516$$aGálvez, E. M.
000147214 700__ $$0(orcid)0000-0003-0154-0730$$aPardo, J.$$uUniversidad de Zaragoza
000147214 700__ $$0(orcid)0000-0003-1081-8482$$aDe La Fuente, J.M.$$uUniversidad de Zaragoza
000147214 7102_ $$11008$$2566$$aUniversidad de Zaragoza$$bDpto. Microb.Med.Pr.,Sal.Públ.$$cÁrea Inmunología
000147214 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000147214 773__ $$g9, 1 (2015), 52-61$$pACS Nano$$tACS NANO$$x1936-0851
000147214 8564_ $$s632995$$uhttps://zaguan.unizar.es/record/147214/files/texto_completo.pdf$$yVersión publicada
000147214 8564_ $$s2742933$$uhttps://zaguan.unizar.es/record/147214/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147214 909CO $$ooai:zaguan.unizar.es:147214$$particulos$$pdriver
000147214 951__ $$a2024-12-16-11:27:24
000147214 980__ $$aARTICLE