Size Distributions for All Cities: Which One is Best?

González-Val, R. (Universidad de Zaragoza) ; Ramos A. (Universidad de Zaragoza) ; Sanz-Gracia F. (Universidad de Zaragoza) ; Vera-Cabello M.
Size Distributions for All Cities: Which One is Best?
Resumen: This paper analyses four statistical distributions used to describe city size distributions: lognormal, double Pareto lognormal, q‐exponential, and log‐logistic. We use un‐truncated city size data for the US, Spain and Italy from 1900 until 2010, and, in addition, the last available year for the remaining countries of the OECD. We estimate the four functions by maximum likelihood. To check the goodness of the fit we use the Kolmogorov‐Smirnov and Cramér‐von Mises tests, and compute the Akaike information criterion and Bayesian information criterion. The results show that the distribution which best fits data in most of the cases (86.76%) is the double Pareto lognormal.
Idioma: Inglés
DOI: 10.1111/pirs.12037
Año: 2015
Publicado en: Papers in Regional Science 94, 1 (2015), 177-197
ISSN: 1056-8190

Factor impacto JCR: 1.144 (2015)
Categ. JCR: ECONOMICS rank: 125 / 341 = 0.367 (2015) - Q2 - T2
Categ. JCR: GEOGRAPHY rank: 42 / 77 = 0.545 (2015) - Q3 - T2
Categ. JCR: ENVIRONMENTAL STUDIES rank: 72 / 104 = 0.692 (2015) - Q3 - T3

Factor impacto SCIMAGO: 0.894 - Geography, Planning and Development (Q1) - Environmental Science (miscellaneous) (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Fund. Análisis Económico (Dpto. Análisis Económico)
Exportado de SIDERAL (2025-01-10-14:24:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > fundamentos_del_analisis_economico



 Notice créée le 2025-01-10, modifiée le 2025-01-10


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)