An image-to-image adversarial network to generate high resolution wind data over complex terrains from weather predictions
Resumen: n this work, we propose a Machine Learning method to predict detailed wind fields over extensive, complex terrains. The ability to predict local wind fields is becoming increasingly important for a range of applications, including sports in Nature, large outdoors events, light-aircraft flying, or the management of natural disasters. The intricate nature of wind dynamics, particularly in regions with complex orography such as a mountain range, presents a major challenge to traditional forecasting models. This work presents an efficient way to predict local wind conditions with a high resolution, similar to that of Computational Fluid Dynamics (CFD), in large geographical areas with complex terrain, using the results from relatively coarse (and therefore economical) data from Numerical Weather Prediction (NWP). To achieve this goal, we developed a conditional Generative Adversarial Neural network model (cGAN) to convert NWP data into CFD-like simulations. We apply the method to a rugged region in the Pyrenees mountain range in Spain. The results show that the proposed model outperforms traditional Machine Learning methods, such as Support Vector Machines (SVM), in terms of accuracy and computational efficiency. The method is four orders of magnitude faster than traditional CFD. Mean Average Errors of 1.36 m/s for wind speed and 18.73°for wind direction are obtained with the proposed approach.
Idioma: Inglés
DOI: 10.1016/j.engappai.2024.109533
Año: 2025
Publicado en: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 139, B (2025), 109533 [14 pp.]
ISSN: 0952-1976

Financiación: info:eu-repo/grantAgreement/ES/DGA/T32-23R
Financiación: info:eu-repo/grantAgreement/ES/MICIN/DIN2019-010452
Financiación: info:eu-repo/grantAgreement/ES/MICINN/TED2021-131861B-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-01-10-14:24:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mecánica de Fluidos



 Registro creado el 2025-01-10, última modificación el 2025-01-10


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)