Resistive switching mechanisms in BiFeO3 devices with YBCO and Ag as top electrodes
Resumen: The resistive switching (RS) effect in ferroelectric oxides continues to attract significant attention due to its potential applications in nonvolatile memory and neuromorphic computing devices. In this study, we investigate the RS properties of BiFeO3/YBa2Cu3O7−d (BFO/YBCO) bilayers grown on LSAT substrates, comparing two different top-electrode materials: YBCO and Ag. The devices were fabricated using reactive sputtering at high oxygen pressure, and their RS mechanisms were investigated via current-voltage (I-V) measurements. We find all devices exhibit unipolar behavior, with symmetric RS behavior observed in devices with YBCO top electrodes and asymmetric RS in those with Ag top electrodes. Devices with YBCO top electrodes display ohmic conduction, whereas Ag top electrode devices exhibit a combination of Schottky, Poole-Frenkel emission, and spaced charge limited conduction mechanisms. Resistance versus time measurements were performed over 30 cycles with 20 different writing voltages to evaluate the ratio between the low resistance state (LRS) and high resistance state (HRS). Ag top electrodes devices consistently exhibited higher resistance ratios ‒approximately three times larger‒ compared to YBCO devices. Furthermore, better temporal stability of HRS and LRS was observed in devices with Ag top electrodes, attributed to the differences in the Fermi energy levels between YBCO, Ag and BFO. The superior performance of Ag top electrode devices, including their higher storage density and low operation parameters (0.25 V and 5 nA), highlights their potential for energy-efficient applications in future oxide-based memory and neuromorphic devices.
Idioma: Inglés
DOI: 10.1016/j.physo.2024.100249
Año: 2025
Publicado en: Physics Open 22 (2025), 100249 [7 pp.]
ISSN: 2666-0326

Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-01-10-14:26:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-01-10, last modified 2025-01-10


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)