Torsion divisors of plane curves with maximal flexes and Zariski pairs
Resumen: There is a close relationship between the embedded topology of complex plane curves and the (group-theoretic) arithmetic of elliptic curves. In a recent paper, we studied the topology of some arrangements of curves that include a special smooth component, via the torsion properties induced by the divisors in the special curve associated to the remaining components, which is an arithmetic property. When this special curve has maximal flexes, there is a natural isomorphism between its Jacobian variety and the degree zero part of its Picard group. In this paper, we consider curve arrangements that contain a special smooth component with a maximal flex and exploit these properties to obtain Zariski tuples, which show the interplay between topology, geometry, and arithmetic.
Idioma: Inglés
DOI: 10.1002/mana.202000319
Año: 2023
Publicado en: Mathematische Nachrichten 296, 6 (2023), 2214-2235
ISSN: 0025-584X

Factor impacto JCR: 0.8 (2023)
Categ. JCR: MATHEMATICS rank: 179 / 490 = 0.365 (2023) - Q2 - T2
Factor impacto CITESCORE: 1.5 - Mathematics (all) (Q2)

Factor impacto SCIMAGO: 0.625 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-76868-C2-2-P
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-01-13-14:27:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-01-13, last modified 2025-01-14


Preprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)