Optimization of the area under the ROC curve using neural network supervectors for text-dependent speaker verification

Mingote, V. (Universidad de Zaragoza) ; Miguel, A. (Universidad de Zaragoza) ; Ortega, A. (Universidad de Zaragoza) ; Lleida, E. (Universidad de Zaragoza)
Optimization of the area under the ROC curve using neural network supervectors for text-dependent speaker verification
Resumen: This paper explores two techniques to improve the performance of text-dependent speaker verification systems based on deep neural networks. Firstly, we propose a general alignment mechanism to keep the temporal structure of each phrase and obtain a supervector with the speaker and phrase information, since both are relevant for a text-dependent verification. As we show, it is possible to use different alignment techniques to replace the global average pooling providing significant gains in performance. Moreover, we also present a novel Back-end approach to train a neural network for detection tasks by optimizing the Area Under the Curve (AUC) as an alternative to the usual triplet loss function, so the system is end-to-end, with a cost function close to our desired measure of performance. As we can see in the experimental section, this approach improves the system performance, since our triplet neural network based on an approximation of the AUC (aAUC) learns how to discriminate between pairs of examples from the same identity and pairs of different identities. The different alignment techniques to produce supervectors in addition to the new Back-end approach were tested on the RSR2015-Part I and RSR2015-Part II database for text-dependent speaker verification, providing competitive results compared to similar size networks using the global average pooling to extract supervectors and using a simple Back-end or triplet loss training.
Idioma: Inglés
DOI: 10.1016/j.csl.2020.101078
Año: 2020
Publicado en: COMPUTER SPEECH AND LANGUAGE 63 (2020), 101078 [16 pp.]
ISSN: 0885-2308

Factor impacto JCR: 1.899 (2020)
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 95 / 139 = 0.683 (2020) - Q3 - T3
Factor impacto SCIMAGO: 0.452 - Software (Q2) - Human-Computer Interaction (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/T36-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2017-85854-C4-1-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Exportado de SIDERAL (2025-01-15-15:06:03)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > teoria_de_la_senal_y_comunicaciones



 Notice créée le 2025-01-15, modifiée le 2025-01-15


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)