Biohybrid soft robots with self-stimulating skeletons
Resumen: Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components offers unique characteristics that artificial materials cannot precisely replicate, such as adaptability and response to external stimuli. Here, we present a skeletal muscle–based swimming biobot with a three-dimensional (3D)–printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: directional swimming when the biobot is at the liquid-air interface and coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 hertz (800 micrometers per second, 3 body lengths per second). This skeletal muscle–based biohybrid swimmer attains speeds comparable with those of cardiac-based biohybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.
Idioma: Inglés
DOI: 10.1126/scirobotics.abe7577
Año: 2021
Publicado en: Science robotics 6, 53 (2021), eabe7577 [13 pp.]
ISSN: 2470-9476

Factor impacto JCR: 27.541 (2021)
Categ. JCR: ROBOTICS rank: 1 / 30 = 0.033 (2021) - Q1 - T1
Factor impacto CITESCORE: 32.6 - Engineering (Q1) - Mathematics (Q1) - Computer Science (Q1)

Factor impacto SCIMAGO: 6.569 - Artificial Intelligence (Q1) - Mechanical Engineering (Q1) - Computer Science Applications (Q1)

Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-01-15-15:06:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mecánica de Fluidos



 Registro creado el 2025-01-15, última modificación el 2025-01-15


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)