The Shimura covering of a Shimura curve: automorphisms and étale subcoverings
Resumen: Let X be the Shimura curve associated with an indefinite rational quaternion algebra of discriminant D, and let p be a prime dividing D. In their investigations on the arithmetic of X, Jordan and Skorobogatov introduced a covering Xp of X whose maximal étale quotient is referred to as the Shimura covering of X at p. The goal of this note is to describe the group of modular automorphisms of the curve Xp and its quotients. As an application, we construct cyclic étale Galois coverings of Atkin-Lehner quotients of X.
Idioma: Inglés
DOI: 10.1016/j.jnt.2013.04.018
Año: 2013
Publicado en: JOURNAL OF NUMBER THEORY 133, 10 (2013), 3500-3516
ISSN: 0022-314X

Factor impacto JCR: 0.524 (2013)
Categ. JCR: MATHEMATICS rank: 176 / 301 = 0.585 (2013) - Q3 - T2
Tipo y forma: Article (PostPrint)
Exportado de SIDERAL (2025-10-17-14:30:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2025-01-27, modifiée le 2025-10-17


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)