000150551 001__ 150551 000150551 005__ 20251017144647.0 000150551 0247_ $$2doi$$a10.1002/adem.202401820 000150551 0248_ $$2sideral$$a142630 000150551 037__ $$aART-2024-142630 000150551 041__ $$aeng 000150551 100__ $$aPandey, Shilpi 000150551 245__ $$aMechanisms of De-icing by Surface Rayleigh and Plate Lamb Acoustic Waves 000150551 260__ $$c2024 000150551 5060_ $$aAccess copy available to the general public$$fUnrestricted 000150551 5203_ $$aAcoustic waves (AW) have recently emerged as an energy‐efficient ice‐removal procedure compatible with functional and industrial‐relevant substrates. However, critical aspects at fundamental and experimental levels have yet to be disclosed to optimize their operational conditions. Identifying the processes and mechanisms by which different types of AWs induce de‐icing are some of these issues. Herein, using model LiNbO3 systems and two types of interdigitated transducers, the e‐icing and anti‐icing efficiencies and mechanisms driven by Rayleigh surface acoustic waves (R‐SAW) and Lamb waves with 120 and 510 μm wavelengths, respectively, are analyzed. Through the experimental analysis of de‐icing and active anti‐icing processes and the finite element simulation of the AW generation, propagation, and interaction with small ice aggregates, it is disclosed that Lamb waves are more favorable than R‐SAWs to induce de‐icing and/or prevent the freezing of small ice droplets. Prospects for applications of this study are supported by proof of concept experiments, including de‐icing in an icing wind tunnel, demonstrating that Lamb waves can efficiently remove ice layers covering large LN substrates. Results indicate that the de‐icing mechanism may differ for Lamb waves or R‐SAWs and that the wavelength must be considered as an important parameter for controlling the efficiency. 000150551 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-143120OB-I00$$9info:eu-repo/grantAgreement/EUR/AEI/TED2021-130916B-I0$$9info:eu-repo/grantAgreement/EC/H2020/899352/EU/Sustainable Smart De-Icing by Surface Engineering of Acoustic Waves/SOUNDofICE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 899352-SOUNDofICE 000150551 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es 000150551 590__ $$a3.3$$b2024 000150551 592__ $$a0.76$$b2024 000150551 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b227 / 460 = 0.493$$c2024$$dQ2$$eT2 000150551 593__ $$aCondensed Matter Physics$$c2024$$dQ1 000150551 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ2 000150551 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000150551 700__ $$adel Moral, Jaime 000150551 700__ $$aJacob, Stefan 000150551 700__ $$aMontes, Laura 000150551 700__ $$aGil-Rostra, Jorge 000150551 700__ $$aFrechilla, Alejandro$$uUniversidad de Zaragoza 000150551 700__ $$aKarimzadeh, Atefeh 000150551 700__ $$aRico, Victor J. 000150551 700__ $$aKanter, Raul 000150551 700__ $$aKandelin, Niklas 000150551 700__ $$aLópez-Santos, Carmen 000150551 700__ $$aKoivuluoto, Heli 000150551 700__ $$aAngurel, Luis 000150551 700__ $$aWinkler, Andreas 000150551 700__ $$aBorrás, Ana 000150551 700__ $$aGonzález-Elipe, Agustin R. 000150551 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal. 000150551 773__ $$g(2024), 2401820 [16 pp.]$$pAdv. eng. mater.$$tADVANCED ENGINEERING MATERIALS$$x1438-1656 000150551 8564_ $$s6765570$$uhttps://zaguan.unizar.es/record/150551/files/texto_completo.pdf$$yVersión publicada 000150551 8564_ $$s2606083$$uhttps://zaguan.unizar.es/record/150551/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000150551 909CO $$ooai:zaguan.unizar.es:150551$$particulos$$pdriver 000150551 951__ $$a2025-10-17-14:34:36 000150551 980__ $$aARTICLE