000150551 001__ 150551
000150551 005__ 20251017144647.0
000150551 0247_ $$2doi$$a10.1002/adem.202401820
000150551 0248_ $$2sideral$$a142630
000150551 037__ $$aART-2024-142630
000150551 041__ $$aeng
000150551 100__ $$aPandey, Shilpi
000150551 245__ $$aMechanisms of De-icing by Surface Rayleigh and Plate Lamb Acoustic Waves
000150551 260__ $$c2024
000150551 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150551 5203_ $$aAcoustic waves (AW) have recently emerged as an energy‐efficient ice‐removal procedure compatible with functional and industrial‐relevant substrates. However, critical aspects at fundamental and experimental levels have yet to be disclosed to optimize their operational conditions. Identifying the processes and mechanisms by which different types of AWs induce de‐icing are some of these issues. Herein, using model LiNbO3 systems and two types of interdigitated transducers, the e‐icing and anti‐icing efficiencies and mechanisms driven by Rayleigh surface acoustic waves (R‐SAW) and Lamb waves with 120 and 510 μm wavelengths, respectively, are analyzed. Through the experimental analysis of de‐icing and active anti‐icing processes and the finite element simulation of the AW generation, propagation, and interaction with small ice aggregates, it is disclosed that Lamb waves are more favorable than R‐SAWs to induce de‐icing and/or prevent the freezing of small ice droplets. Prospects for applications of this study are supported by proof of concept experiments, including de‐icing in an icing wind tunnel, demonstrating that Lamb waves can efficiently remove ice layers covering large LN substrates. Results indicate that the de‐icing mechanism may differ for Lamb waves or R‐SAWs and that the wavelength must be considered as an important parameter for controlling the efficiency.
000150551 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-143120OB-I00$$9info:eu-repo/grantAgreement/EUR/AEI/TED2021-130916B-I0$$9info:eu-repo/grantAgreement/EC/H2020/899352/EU/Sustainable Smart De-Icing by Surface Engineering of Acoustic Waves/SOUNDofICE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 899352-SOUNDofICE
000150551 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000150551 590__ $$a3.3$$b2024
000150551 592__ $$a0.76$$b2024
000150551 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b227 / 460 = 0.493$$c2024$$dQ2$$eT2
000150551 593__ $$aCondensed Matter Physics$$c2024$$dQ1
000150551 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ2
000150551 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150551 700__ $$adel Moral, Jaime
000150551 700__ $$aJacob, Stefan
000150551 700__ $$aMontes, Laura
000150551 700__ $$aGil-Rostra, Jorge
000150551 700__ $$aFrechilla, Alejandro$$uUniversidad de Zaragoza
000150551 700__ $$aKarimzadeh, Atefeh
000150551 700__ $$aRico, Victor J.
000150551 700__ $$aKanter, Raul
000150551 700__ $$aKandelin, Niklas
000150551 700__ $$aLópez-Santos, Carmen
000150551 700__ $$aKoivuluoto, Heli
000150551 700__ $$aAngurel, Luis
000150551 700__ $$aWinkler, Andreas
000150551 700__ $$aBorrás, Ana
000150551 700__ $$aGonzález-Elipe, Agustin R.
000150551 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000150551 773__ $$g(2024), 2401820 [16 pp.]$$pAdv. eng. mater.$$tADVANCED ENGINEERING MATERIALS$$x1438-1656
000150551 8564_ $$s6765570$$uhttps://zaguan.unizar.es/record/150551/files/texto_completo.pdf$$yVersión publicada
000150551 8564_ $$s2606083$$uhttps://zaguan.unizar.es/record/150551/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150551 909CO $$ooai:zaguan.unizar.es:150551$$particulos$$pdriver
000150551 951__ $$a2025-10-17-14:34:36
000150551 980__ $$aARTICLE