Dynamical system simulation with attention and recurrent neural networks
Resumen: Accurate and efficient real-time simulation of nonlinear dynamic systems remains an important challenge in fields such as robotics, control systems and industrial processes, requiring innovative solutions for predictive modeling. In this work, we introduce a novel recurrent neural networks (RNN) architecture designed to simulate complex nonlinear dynamical systems. Our approach aims to predict system behavior at any time step and over any prediction horizon, using only the system’s initial state and external inputs. The proposed architecture combines RNN with multilayer perceptron and incorporates an attention mechanism to process both previous state estimates and external inputs. By training without teacher forcing, our model can iteratively estimate the system’s state over long prediction horizons. Experimental results on three public benchmarks show that our method outperforms other state-of-the-art solutions. We highlight the potential of our proposal for modeling and simulating nonlinear systems in real-world applications.
Idioma: Inglés
DOI: 10.1007/s00521-024-10732-y
Año: 2025
Publicado en: Neural Computing and Applications 37 (2025), 2711-2731
ISSN: 0941-0643

Financiación: info:eu-repo/grantAgreement/EUR/AEI/CPP2021-008938
Financiación: info:eu-repo/grantAgreement/EUR/AEI/TED2021-130224B-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T45-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-124137OB-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-10-17-14:30:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería de Sistemas y Automática



 Record created 2025-02-14, last modified 2025-10-17


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)