Estimation of the covariance matrix of a Gaussian Markov Random Field under a total positivity constraint
Resumen: Gaussian Markov Random Fields are a popular statistical model that has been used successfully in many fields of application. Recent work has studied conditions under which the covariance matrix of a Gaussian Markov Random Field over a graph of paths is totally positive. In such case, many linear algebra operations concerning the covariance matrix can be performed with High Relative Accuracy (the relative error is of order of machine precision). Unfortunately, classical estimators of the covariance matrix do not necessarily yield a totally positive matrix, even when the population covariance matrix is totally positive. Essentially, this inconvenience prevents the available High Relative Accuracy methods to be used with real-life data. Here, we present a method for the estimation of the covariance matrix of a Gaussian Markov Random Field over a graph of paths assuring the estimated covariance matrix (or its inverse) is totally positive.
Idioma: Inglés
DOI: 10.1016/j.cam.2025.116543
Año: 2025
Publicado en: Journal of Computational and Applied Mathematics 464 (2025), 116543 [15 pp.]
ISSN: 0377-0427

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-139886NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-140585NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
Tipo y forma: Artículo (PrePrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Derechos Reservados Derechos reservados por el editor de la revista


Fecha de embargo : 2026-07-30
Exportado de SIDERAL (2025-10-17-14:31:52)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2025-02-14, última modificación el 2025-10-17


Preprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)