Developing machine learning models from multisourced real-world datasets to enhance smart-farming practices
Resumen: Smart farming technologies empower farmers to achieve sustainability by enabling data-driven decision-making. For instance, smart farming can contribute to farm sustainability through optimized pest control. By utilizing pest risk prediction models, farmers can conserve resources and minimize environmental impact by avoiding unnecessary treatments. However, effective crop pest control relies on timely treatments at specific phenological stages. Therefore, the ability to accurately predict phenological development becomes a crucial factor in increasing farm sustainability.

This paper describes the design, development and evaluation of a set of Machine Learning models that predict the phenology of grapevines. The models were trained on multisourced data that combine 9 different datasets with different temporal and spatial resolutions. The authors evaluated and compared different machine learning algorithms to predict 9 different phenological stages of grapevines. The models that performed best also included data derived from Sentinel-2 images, which suggests that multispectral satellite images could be used to monitor and predict woody plant phenology. A key contribution of our proposal is the combination of multiple data sources and a fine-grained prediction aimed at distinguishing among 9 phenological states.

Idioma: Inglés
DOI: 10.1016/j.compag.2025.110018
Año: 2025
Publicado en: Computers and Electronics in Agriculture 231 (2025), 110018 [21 pp.]
ISSN: 0168-1699

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113037RB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T17-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T64-23R
Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101086461/EU/Smart Farm and Agri-environmental Big Data Space/AgriDataValue
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Producción Vegetal (Dpto. CC.Agrar.y Medio Natural)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Fecha de embargo : 2027-02-03
Exportado de SIDERAL (2025-02-14-14:03:52)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos
Artículos > Artículos por área > Producción Vegetal



 Registro creado el 2025-02-14, última modificación el 2025-02-14


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)