000150804 001__ 150804
000150804 005__ 20250214153851.0
000150804 0247_ $$2doi$$a10.1016/j.bspc.2025.107641
000150804 0248_ $$2sideral$$a142879
000150804 037__ $$aART-2025-142879
000150804 041__ $$aeng
000150804 100__ $$0(orcid)0000-0001-5918-1043$$aArmañac-Julián, Pablo$$uUniversidad de Zaragoza
000150804 245__ $$aVascular reactivity characterized by PPG-derived pulse wave velocity
000150804 260__ $$c2025
000150804 5060_ $$aAccess copy available to the general public$$fUnrestricted
000150804 5203_ $$aVascular reactivity is the capacity of the blood vessels to adapt under physiological and environmental stimuli. Heat stress causes changes at vascular level affecting pulse wave velocity (PWV), which can be non-invasively obtained using pulse photoplethysmography (PPG). The study aim is to characterize non-invasive and reliable PPG-derived PWV surrogates that are able to assess vascular reactivity, using data from fifteen healthy male volunteers under heat stress conditions. Pulse arrival time (PAT) is a recognized PWV surrogate measure, but our study explores further by including pulse transit time difference (PTTD) and pulse wave decomposition analysis (PDA). Our results indicate a significant linear decrease in PAT and PDA under heat stress, with an approximate 15% reduction compared to the relax phase, closely correlating with heart rate (HR) alterations. This correlation is likely influenced by factors such as the pre-ejection period or stroke volume changes. In contrast, PTTD demonstrates a distinct pattern: it exhibits significant and rapid changes during the initial exposure to heat stress, with an approximate 30% reduction, yet shows minimal intra-stage variations (around 0 ms/min compared to 2.5 ms/min in PAT). This suggests that PTTD, in measuring acute sympathetic activation responses, effectively minimizes the impact of HR-related phenomena that significantly influence PAT and PDA measurements. Our study highlights PTTD as an underexplored yet promising measure for accurately assessing vasoconstriction and vascular reactivity.
000150804 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T39-23R-BSICoS$$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PID2021-126734OB-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131106B-I00
000150804 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000150804 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000150804 700__ $$0(orcid)0000-0002-1297-0691$$aKontaxis, Spyridon
000150804 700__ $$0(orcid)0000-0001-8742-0072$$aLázaro, Jesús$$uUniversidad de Zaragoza
000150804 700__ $$aRapalis, Andrius
000150804 700__ $$aBrazaitis, Marius
000150804 700__ $$aMarozas, Vaidotas
000150804 700__ $$0(orcid)0000-0003-3434-9254$$aLaguna, Pablo$$uUniversidad de Zaragoza
000150804 700__ $$0(orcid)0000-0003-1272-0550$$aBailón, Raquel$$uUniversidad de Zaragoza
000150804 700__ $$0(orcid)0000-0001-7285-0715$$aGil, Eduardo$$uUniversidad de Zaragoza
000150804 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000150804 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000150804 773__ $$g105 (2025), 107641 [8 pp.]$$pBiomed. signal proces. control$$tBiomedical Signal Processing and Control$$x1746-8094
000150804 8564_ $$s1117171$$uhttps://zaguan.unizar.es/record/150804/files/texto_completo.pdf$$yVersión publicada
000150804 8564_ $$s2805259$$uhttps://zaguan.unizar.es/record/150804/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000150804 909CO $$ooai:zaguan.unizar.es:150804$$particulos$$pdriver
000150804 951__ $$a2025-02-14-14:05:04
000150804 980__ $$aARTICLE