000151043 001__ 151043
000151043 005__ 20250221105703.0
000151043 0247_ $$2doi$$a10.1016/j.enggeo.2022.106625
000151043 0248_ $$2sideral$$a128726
000151043 037__ $$aART-2022-128726
000151043 041__ $$aeng
000151043 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000151043 245__ $$aNovel discretization strategies for the 2D non-Newtonian resistance term in geophysical shallow flows
000151043 260__ $$c2022
000151043 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151043 5203_ $$aIn the context of two-dimensional models for complex geophysical surface flows such as debris flows, muddy slurries, oil spills over land, hyperconcentrated floods, lava flows, etc, depth-averaged rheological models relate the shear stress state within the fluid column to the depth-averaged local flow features. Despite it is the most influencing term on the mobility of complex shallow flows, the numerical treatment of the resistance contribution to the flow momentum is still a challenging topic, especially when dealing with 2D large-scale applications. In this work, two novel strategies for the explicit upwind discretization of generalized non-Newtonian resistance terms in two-dimensional numerical models are proposed, called integral and differential approaches. These new strategies are applicable to generalized rheological formulations in any type of mesh topology. Results from benchmark tests running in orthogonal, triangle structured and triangle unstructured meshes demonstrate that both approaches represent an improvement for the explicit upwind integration of the 2D resistance force compared with previous procedures. It is shown that the alignment of the flow with the mesh main-axis, which has been previously attributed to faults of 2D FV numerical methods and insufficient mesh refinements, is directly related to the loss of the rotational invariance of the integrated resistance force. This is caused by the erroneous procedure for including the 2D resistance term into the local flux balance at the cell edges. Furthermore, a novel implicit centered method for the integration of the 2D resistance force has also been derived for the quadratic frictional non-linear resistance formulation. Despite the implicit procedure fails to converge to steady uniform flow states, the differential explicit upwind and the implicit centered methods show similar level of accuracy, robustness and computational efficiency for transient 2D frictional visco-plastic flows.
000151043 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000151043 590__ $$a7.4$$b2022
000151043 591__ $$aGEOSCIENCES, MULTIDISCIPLINARY$$b12 / 202 = 0.059$$c2022$$dQ1$$eT1
000151043 591__ $$aENGINEERING, GEOLOGICAL$$b1 / 41 = 0.024$$c2022$$dQ1$$eT1
000151043 592__ $$a2.342$$b2022
000151043 593__ $$aGeotechnical Engineering and Engineering Geology$$c2022$$dQ1
000151043 593__ $$aGeology$$c2022$$dQ1
000151043 594__ $$a12.0$$b2022
000151043 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151043 700__ $$aMurillo, J.$$uUniversidad de Zaragoza
000151043 700__ $$0(orcid)0000-0001-6961-7250$$aMorales-Hernández, M.$$uUniversidad de Zaragoza
000151043 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000151043 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000151043 7102_ $$14013$$2X$$aUniversidad de Zaragoza$$bDpto. Didácticas Específicas$$cÁrea Técnica. Lab. y Talleres
000151043 773__ $$g302 (2022), 106625 [27 pp.]$$pEng. geol.$$tEngineering Geology$$x0013-7952
000151043 8564_ $$s16775315$$uhttps://zaguan.unizar.es/record/151043/files/texto_completo.pdf$$yVersión publicada
000151043 8564_ $$s2548438$$uhttps://zaguan.unizar.es/record/151043/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151043 909CO $$ooai:zaguan.unizar.es:151043$$particulos$$pdriver
000151043 951__ $$a2025-02-21-09:53:09
000151043 980__ $$aARTICLE