Jacobi multipliers in integrability and the inverse problem of mechanics
Resumen: We review the general theory of the Jacobi last multipliers in geometric terms and then apply the theory to different problems in integrability and the inverse problem for one-dimensional mechanical systems. Within this unified framework, we derive the explicit form of a Lagrangian obtained by several authors for a given dynamical system in terms of known constants of the motion via a Jacobi multiplier for both autonomous and nonautonomous systems, and some examples are used to illustrate the general theory. Finally, some geometric results on Jacobi multipliers and their use in the study of Hojman symmetry are given.
Idioma: Inglés
DOI: 10.3390/sym13081413
Año: 2021
Publicado en: Symmetry 13, 8 (2021), 1413 [30 pp.]
ISSN: 2073-8994

Factor impacto JCR: 2.94 (2021)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 34 / 74 = 0.459 (2021) - Q2 - T2
Factor impacto CITESCORE: 4.3 - Mathematics (Q1) - Physics and Astronomy (Q2) - Computer Science (Q2)

Factor impacto SCIMAGO: 0.54 - Chemistry (miscellaneous) (Q2) - Physics and Astronomy (miscellaneous) (Q2) - Computer Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICIU/PGC2018-098265-B-C31
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)
Exportado de SIDERAL (2025-10-17-14:17:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > fisica_teorica



 Notice créée le 2025-02-27, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)