An Institutional Theory Framework for Leveraging Large Language Models for Policy Analysis and Intervention Design
Resumen: This study proposes a comprehensive framework for integrating data-driven approaches into policy analysis and intervention strategies. The methodology is structured around five critical components: data collection, historical analysis, policy impact assessment, predictive modeling, and intervention design. Leveraging data-driven approaches capabilities, the line of work enables advanced multilingual data processing, advanced statistics in population trends, evaluation of policy outcomes, and the development of evidence-based interventions. A key focus is on the theoretical integration of social order mechanisms, including communication modes as institutional structures, token optimization as an efficiency mechanism, and institutional memory adaptation. A mixed methods approach was used that included sophisticated visualization techniques and use cases in the hospitality sector, in global food security, and in educational development. The framework demonstrates its capacity to inform government and industry policies by leveraging statistics, visualization, and AI-driven decision support. We introduce the concept of “institutional intelligence”—the synergistic integration of human expertise, AI capabilities, and institutional theory—to create adaptive yet stable policy-making systems. This research highlights the transformative potential of data-driven approaches combined with large language models in supporting sustainable and inclusive policy-making processes.
Idioma: Inglés
DOI: 10.3390/fi17030096
Año: 2025
Publicado en: FUTURE INTERNET 17, 3 (2025), 96 [28 pp.]
ISSN: 1999-5903

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Sociología (Dpto. Psicología y Sociología)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Dataset asociado: ADR Interactive Map ( https://public.flourish.studio/story/2733675/)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:21:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos
Artículos > Artículos por área > Sociología



 Registro creado el 2025-02-27, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)