Curve singularities with one Puiseux pair and value sets of modules over their local rings
Resumen: In this paper we characterize the value set \Delta of the R-modules of the form R+zR for the local ring R associated to a germ \xi of an irreducible plane curve singularity with one Puiseux pair. In the particular case of the module of Kähler differentials attached to \xi, we recover some results of Delorme. From our characterization of \Delta we introduce a proper subset of semimodules over the value semigroup of the ring R. Moreover, we provide a combinatorial algorithm to construct all possible semimodules in this subset for a given value semigroup.
Idioma: Inglés
DOI: 10.1007/s10801-025-01382-x
Año: 2025
Publicado en: JOURNAL OF ALGEBRAIC COMBINATORICS 61, 20 (2025), [20 pp.]
ISSN: 0925-9899

Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C32/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-034300-I
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Fecha de embargo : 2026-01-22
Exportado de SIDERAL (2025-10-17-14:36:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-03-07, last modified 2025-10-17


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)