000151455 001__ 151455
000151455 005__ 20251017144613.0
000151455 0247_ $$2doi$$a10.1186/s13054-021-03487-8
000151455 0248_ $$2sideral$$a143124
000151455 037__ $$aART-2021-143124
000151455 041__ $$aeng
000151455 100__ $$aRodríguez, Alejandro
000151455 245__ $$aDeploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain
000151455 260__ $$c2021
000151455 5060_ $$aAccess copy available to the general public$$fUnrestricted
000151455 5203_ $$aBackground
The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.

Methods
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.

Results
The database included a total of 2022 patients (mean age 64 [IQR 5–71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10–17]) and SOFA score (5 [IQR 3–7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.

Conclusion
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice.
000151455 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000151455 590__ $$a19.344$$b2021
000151455 591__ $$aCRITICAL CARE MEDICINE$$b4 / 35 = 0.114$$c2021$$dQ1$$eT1
000151455 592__ $$a3.218$$b2021
000151455 593__ $$aCritical Care and Intensive Care Medicine$$c2021$$dQ1
000151455 594__ $$a14.2$$b2021
000151455 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000151455 700__ $$aRuiz-Botella, Manuel
000151455 700__ $$aMartín-Loeches, Ignacio
000151455 700__ $$aJimenez Herrera, María
000151455 700__ $$aSolé-Violan, Jordi
000151455 700__ $$aGómez, Josep
000151455 700__ $$aBodí, María
000151455 700__ $$aTrefler, Sandra
000151455 700__ $$aPapiol, Elisabeth
000151455 700__ $$aDíaz, Emili
000151455 700__ $$aSuberviola, Borja
000151455 700__ $$aVallverdu, Montserrat
000151455 700__ $$aMayor-Vázquez, Eric
000151455 700__ $$aAlbaya Moreno, Antonio
000151455 700__ $$aCanabal Berlanga, Alfonso
000151455 700__ $$aSánchez, Miguel
000151455 700__ $$adel Valle Ortíz, María
000151455 700__ $$aBallesteros, Juan Carlos
000151455 700__ $$aMartín Iglesias, Lorena
000151455 700__ $$aMarín-Corral, Judith
000151455 700__ $$aLópez Ramos, Esther
000151455 700__ $$aHidalgo Valverde, Virginia
000151455 700__ $$aVidaur Tello, Loreto Vidaur
000151455 700__ $$aSancho Chinesta, Susana
000151455 700__ $$aGonzáles de Molina, Francisco Javier
000151455 700__ $$aHerrero García, Sandra
000151455 700__ $$aSena Pérez, Carmen Carolina
000151455 700__ $$aPozo Laderas, Juan Carlos
000151455 700__ $$aRodríguez García, Raquel
000151455 700__ $$aEstella, Angel
000151455 700__ $$aFerrer, Ricard
000151455 700__ $$aLoza, Ana
000151455 700__ $$aMatallana Zapata, Diego
000151455 700__ $$aDíaz Torres, Isabel
000151455 700__ $$aIbañez Cuadros, Sonia
000151455 700__ $$aRecuerda Nuñez, María
000151455 700__ $$aCarmona Pérez, Maria Luz
000151455 700__ $$aGómez Ramos, Jorge
000151455 700__ $$aVillares Casas, Alba
000151455 700__ $$aCantón, María Luisa
000151455 700__ $$aGonzález Contreras, José Javier
000151455 700__ $$aPérez Chomón, Helena
000151455 700__ $$aAlvarez Chicote, Nerissa
000151455 700__ $$aSousa González, Alberto
000151455 700__ $$aDe Alba Aparicio, María
000151455 700__ $$aMoreno Cano, Sara
000151455 700__ $$aJorge García, Ruth
000151455 700__ $$aSánchez Montori, Laura
000151455 700__ $$aAbanses Moreno, Paula
000151455 700__ $$aMayordomo García, Carlos
000151455 700__ $$aMallor Bonet, Tomás
000151455 700__ $$aOmedas Bonafonte, Paula
000151455 700__ $$aFranquesa Gonzalez, Enric
000151455 700__ $$aBueno Vidales, Nestor
000151455 700__ $$aOcabo Buil, Paula
000151455 700__ $$0(orcid)0000-0002-8068-5016$$aSerón Arbeloa, Carlos$$uUniversidad de Zaragoza
000151455 7102_ $$11007$$2610$$aUniversidad de Zaragoza$$bDpto. Medicina, Psiqu. y Derm.$$cArea Medicina
000151455 773__ $$g25 (2021), 63 [15 pp.]$$pCrit. care$$tCritical care$$x1364-8535
000151455 8564_ $$s2285946$$uhttps://zaguan.unizar.es/record/151455/files/texto_completo.pdf$$yVersión publicada
000151455 8564_ $$s2407849$$uhttps://zaguan.unizar.es/record/151455/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000151455 909CO $$ooai:zaguan.unizar.es:151455$$particulos$$pdriver
000151455 951__ $$a2025-10-17-14:18:10
000151455 980__ $$aARTICLE