Statistics of coherent waves inside media with Lévy disorder
Resumen: Structures with heavy-tailed distributions of disorder occur widely in nature. The evolution of such systems, as in foraging for food or the occurrence of earthquakes, is generally analyzed in terms of an incoherent series of events. But the study of wave propagation or lasing in such systems requires the consideration of coherent scattering. We consider the distribution of wave energy inside one-dimensional random media in which the spacing between scatterers follow a Lévy a-stable distribution characterized by a power-law decay with exponent a. We show that the averages of the intensity and logarithmic intensity are given in terms of the average of the logarithm of transmission and the depth into the sample raised to the power a. Mapping the depth into the sample to the number of scattering elements yields intensity statistics that are identical to those found for Anderson localization in standard random media. This allows for the separation for the impacts of disorder distribution and wave coherence in random media.
Idioma: Inglés
DOI: 10.1103/PhysRevResearch.3.023035
Año: 2021
Publicado en: Physical Review Research 3, 2 (2021), 023035 [6 pp.]
ISSN: 2643-1564

Factor impacto CITESCORE: 4.6 - Physics and Astronomy (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MCIU/PGC2018-094684-B-C22
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)
Exportado de SIDERAL (2025-10-17-14:21:06)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > fisica_teorica



 Notice créée le 2025-03-19, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)