Graphene-modified g-C3N4/ a-Fe2O3 systems for light-induced hydrogen generation
Resumen: Photocatalysis represents an advanced and efficient technology for harnessing light energy. The non-toxicity, affordability, and versatility of this technique render it particularly attractive for hydrogen production via water splitting. Nevertheless, the primary challenge lies in identifying materials capable of efficiently catalyzing the water splitting reaction upon exposure to light. This study presents the influence of the quantity of hematite and graphene on g-C3N4 in the context of hydrogen generation from methanol-water decomposition under UVC irradiation. Pure g-C3N4 exhibits the highest hydrogen generation efficiency. However, adding hematite decreases photocatalytic efficiency, likely due to the formation of a type II heterojunction between α-Fe2O3 and g-C3N4, which reduces the overall reduction capacity of the system. While incorporating graphene into the g-C3N4/α-Fe2O3 system enhances photocatalytic efficiency by improving electron mobility and prolonging the lifetime of photo-generated excitons, the highest yield was achieved with BUF10/GNP0.5. This research offers valuable insights into charge transfer and separation processes for photo-generated excitons within the g-C3N4/α-Fe2O3 and g-C3N4/α-Fe2O3/graphene systems in the context of light-induced hydrogen production.
Idioma: Inglés
DOI: 10.1016/j.cartre.2025.100491
Año: 2025
Publicado en: Carbon trends 19 (2025), 100491 [9 pp.]
ISSN: 2667-0569

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2023-151080NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E13-23R
Financiación: info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-10-17-14:25:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-03-19, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)