High relative accuracy for a Newton form of bivariate interpolation problems

Khiar, Yasmina (Universidad de Zaragoza) ; Mainar, Esmeralda (Universidad de Zaragoza) ; Royo-Amondarain, Eduardo (Universidad de Zaragoza) ; Rubio, Beatriz (Universidad de Zaragoza) ;
High relative accuracy for a Newton form of bivariate interpolation problems
Resumen: The problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of the order of machine precision. A generalization of the classical recursion formula of divided differences in two dimensions is proposed for grids that generalize the standard rectangular layout. Numerical experiments demonstrate the high accuracy achieved by the proposed approach.
Idioma: Inglés
DOI: 10.3934/math.2025178
Año: 2025
Publicado en: AIMS Mathematics 10, 2 (2025), 3836-3847
ISSN: 2473-6988

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:31:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-03-19, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)