Thermal crumpling of perforated two-dimensional sheets
Resumen: Thermalized elastic membranes without distant self-avoidance are believed to undergo a crumpling transition when the microscopic bending stiffness is comparable to kT, the scale of thermal fluctuations. Most potential physical realizations of such membranes have a bending stiffness well in excess of experimentally achievable temperatures and are therefore unlikely ever to access the crumpling regime. We propose a mechanism to tune the onset of the crumpling transition by altering the geometry and topology of the sheet itself. We carry out extensive molecular dynamics simulations of perforated sheets with a dense periodic array of holes and observe that the critical temperature is controlled by the total fraction of removed area, independent of the precise arrangement and size of the individual holes. The critical exponents for the perforated membrane are compatible with those of the standard crumpling transition.
Idioma: Inglés
DOI: 10.1038/s41467-017-01551-y
Año: 2017
Publicado en: Nature communications 8 (2017), 1381 [8 pp.]
ISSN: 2041-1723

Factor impacto JCR: 12.353 (2017)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 3 / 63 = 0.048 (2017) - Q1 - T1
Factor impacto SCIMAGO: 6.582 - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Chemistry (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2015-65078-C2-1-P
Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:15:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-03-26, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)