AI-Driven UAV and IoT Traffic Optimization: Large Language Models for Congestion and Emission Reduction in Smart Cities
Resumen: Traffic congestion and carbon emissions remain pressing challenges in urban mobility. This study explores the integration of UAV (drone)-based monitoring systems and IoT sensors, modeled as induction loops, with Large Language Models (LLMs) to optimize traffic flow. Using the SUMO simulator, we conducted experiments in three urban scenarios: Pacific Beach and Coronado in San Diego, and Argüelles in Madrid. A Gemini-2.0-Flash experimental LLM was interfaced with the simulation to dynamically adjust vehicle speeds based on real-time traffic conditions. Comparative results indicate that the AI-assisted approach significantly reduces congestion and CO2 emissions compared to a baseline simulation without AI intervention. This research highlights the potential of UAV-enhanced IoT frameworks for adaptive, scalable traffic management, aligning with the future of drone-assisted urban mobility solutions.
Idioma: Inglés
DOI: 10.3390/drones9040248
Año: 2025
Publicado en: Drones (Basel) 9, 248 (2025), [28 pp.]
ISSN: 2504-446X

Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:12:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2025-04-01, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)