Resumen: We consider standardized sums of independent geometrically distributed random variables whose failure probabilities approach the unity. We show that such sums converge in law to a random variable having an infinitely divisible distribution whose characteristic function depends on the values of the Riemann zeta function at integer arguments. This is motivated by a probabilistic representation of the Stirling numbers of the second kind. Idioma: Inglés DOI: 10.1016/j.spl.2025.110410 Año: 2025 Publicado en: Statistics & Probability Letters 222 (2025), 110410 [6 pp.] ISSN: 0167-7152 Tipo y forma: Article (Published version) Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Exportado de SIDERAL (2025-10-17-14:11:56)