Vanadium incorporation in ferrite nanoparticles serves as an electron buffer and anisotropy tuner in catalytic and hyperthermia applications
Financiación H2020 / H2020 Funds
Resumen: Cancer research has gradually shifted its focus from individual therapies to a combination of them for enhanced treatment effectiveness. In particular, the increased interest in the field of catalytic medicine through nanozymes proposes promising combinations with photothermal therapy, photodynamic therapy, and magnetic fluid hyperthermia (MFH). Nanozyme activity centers around the hydroxyl radical ˙OH, the most toxic of the reactive oxygen species (ROS). With a synergistic approach in mind, we studied VxFe3−xO4 magnetic nanoparticles (MNPs) as agents for ROS production and heating. These MNPs were exhaustively characterised both morphologically and magnetically. A compositional analysis through electron microscopy and spectroscopy unveils a core–shell structure with a V-rich shell. A study of the power absorption of these MNPs fixed into a gel matrix, emulating cytosol viscosity, provides values of up to 1000 W g−1 for samples with 0.5 wt% MNPs, an AC magnetic field amplitude of 65 mT and a frequency of 350 kHz, typical in the MFH application. A concentration of the ˙OH-adduct of up to 2300 nM has been measured through electron spin resonance analysis as a result of peroxidase-like activity. Through the comparison with similarly-sized ferrite MNPs, we determined that V incorporation lowers the magnetic anisotropy and serves as an electron buffer, explaining the enhanced MFH and ROS-production results.
Idioma: Inglés
DOI: 10.1039/d4nr04219k
Año: 2025
Publicado en: Nanoscale 17, 16 (2025), 10205-10218
ISSN: 2040-3364

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2023-151080NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E13-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/101007629 /EU/Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation/NESTOR
Financiación: info:eu-repo/grantAgreement/EC/H2020/101007825/EU/ULtra ThIn MAgneto Thermal sEnsor-Ing/ULTIMATE-I
Financiación: info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2019-106947RB-C21
Financiación: info:eu-repo/grantAgreement/ES/UZ/UZ2023-CIE-02
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:23:56)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física de la Materia Condensada



 Registro creado el 2025-04-25, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)