Improving Grapevine Sustainability through Multifactorial Machine Learning Application
Resumen: Wine farms have to adapt their activities to achieve sustainable development goals. Our goal is to contribute to this adaptation by developing Machine Learning models to predict phenology and pest risk with the aim of reducing applied phytosanitary treatments.
Idioma: Inglés
DOI: 10.26754/jjii3a.4868
Año: 2021
Publicado en: Jornada de jóvenes investigadores del I3A 8 (2021), [2 pp.]
ISSN: 2341-4790

Tipo y forma: Article (Published version)
Área (Departamento): Área Producción Vegetal (Dpto. CC.Agrar.y Medio Natural)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-05-08-09:45:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos
Articles > Artículos por área > Producción Vegetal



 Record created 2025-05-08, last modified 2025-05-08


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)