Radon’s construction and matrix relations generating syzygies
Resumen: Let ¿n be the set of bivariate polynomials of degree not greater than n. A ¿n-correct set of nodes is a set such that the Lagrange interpolation problem with respect to these nodes has a unique solution. A maximal line of a ¿n-correct set is any line containing exactly n+ 1 nodes. Syzygy matrices can be used to find linear factors of the fundamental polynomials and detect maximal lines. We suggest to use matrix relations in order to generate syzygies, identify linear factors of fundamental polynomials and detect maximal lines. We interpret our results in the important case of GC sets trying to shed some light on the Gasca-Maeztu conjecture.
Idioma: Inglés
DOI: 10.1007/s00605-020-01383-x
Año: 2020
Publicado en: MONATSHEFTE FUR MATHEMATIK 192 (2020), 311–332
ISSN: 0026-9255

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.808 (2020)
Categ. JCR: MATHEMATICS rank: 211 / 330 = 0.639 (2020) - Q3 - T2
Factor impacto SCIMAGO: 0.718 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E41-17R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-10-17-14:12:33)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2025-05-08, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)