Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis
Resumen: Climate change and human-mediated dispersal are increasingly influencing species’ geographic distributions. Ecological niche models (ENMs) are widely used in forecasting species’ distributions, but are weak in extrapolation to novel environments because they rely on available distributional data and do not incorporate mechanistic information, such as species’ physiological response to abiotic conditions. To improve accuracy of ENMs, we incorporated physiological knowledge through Bayesian analysis. In a case study of the zebra mussel Dreissena polymorpha, we used native and global occurrences to obtain native and global models representing narrower and broader understanding of zebra mussel’ response to temperature. We also obtained thermal limit and survival information for zebra mussel from peer-reviewed literature and used the two types of information separately and jointly to calibrate native models. We showed that, compared to global models, native models predicted lower relative probability of presence along zebra mussel''s upper thermal limit, suggesting the shortcoming of native models in predicting zebra mussel''s response to warm temperature. We also found that native models showed improved prediction of relative probability of presence when thermal limit was used alone, and best approximated global models when both thermal limit and survival data were used. Our result suggests that integration of physiological knowledge enhances extrapolation of ENM in novel environments. Our modeling framework can be generalized for other species or other physiological limits and may incorporate evolutionary information (e.g. evolved thermal tolerance), thus has the potential to improve predictions of species’ invasive potential and distributional response to climate change. © 2019 The Authors. Ecography published by John Wiley & Sons on behalf of Nordic Society Oikos
Idioma: Inglés
DOI: 10.1111/ecog.04627
Año: 2020
Publicado en: Ecography 43, 2 (2020), 270-282
ISSN: 0906-7590

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 5.992 (2020)
Categ. JCR: BIODIVERSITY CONSERVATION rank: 5 / 60 = 0.083 (2020) - Q1 - T1
Categ. JCR: ECOLOGY rank: 18 / 166 = 0.108 (2020) - Q1 - T1

Factor impacto SCIMAGO: 2.972 - Ecology, Evolution, Behavior and Systematics (Q1)

Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:12:37)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2025-05-08, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)