Fe-modified catalytic carbons for enhanced CO2 gasification: Influence of carbon source and operating conditions

Chaos-Hernández, D. (Universidad de Zaragoza) ; Latorre, N. (Universidad de Zaragoza) ; Tarifa, P. (Universidad de Zaragoza) ; Romeo, E. (Universidad de Zaragoza) ; Monzón, A. (Universidad de Zaragoza)
Fe-modified catalytic carbons for enhanced CO2 gasification: Influence of carbon source and operating conditions
Resumen: In this study, we present results of characterization and reactivity of Fe-doped carbonaceous materials during their catalytic gasification with CO2. The samples include carbons derived from the thermal treatment of lignocellulosic residues pine sawdust (PiDC) and almond shells (AlDC) and a commercial graphite (AG) used for comparison. Iron-supported samples (Fe/PiDC, Fe/AlDC, Fe/AGC) were prepared by impregnating the raw materials (pine sawdust, almond shells and graphite) with a Fe precursor, followed by thermal decomposition under a reducing atmosphere. Characterization results revealed that Fe incorporation significantly influences the textural properties of the resulting carbonaceous materials. Specifically, Fe doping increased defect density and surface roughness while reducing microporosity, particularly in biomass derived carbons, as the Fe content increased. Dynamic gasification tests demonstrated that Fe enhances the reaction rate and lowers the onset temperature. Optimal gasification performance was achieved with intermediate Fe loadings maximizing catalytic efficiency while preventing rapid deactivation of Fe nanoparticles. Within the temperature range of 850–950 °C, nearly complete gasification was achieved, with residual content minimized to 10 % for Fe(4.2 %wt)/AGC, 16 % for Fe(2.4 %wt)/PiDC and 13 % for Fe(3.2 %wt)/AlDC. However, higher Fe loadings and temperatures exceeding 900 °C led to accelerated Fe deactivation due to sintering and oxidation. At CO2 concentrations below 8.3 %, these adverse effects were mitigated, optimizing the gasification rate. These findings underscore the critical interplay between Fe dispersion, carbon structure and gasification conditions, offering valuable insights for designing efficient Fe-based catalytic systems for CO2 valorization in sustainable energy applications.
Idioma: Inglés
DOI: 10.1016/j.biombioe.2025.107834
Año: 2025
Publicado en: BIOMASS & BIOENERGY 197 (2025), 107834 [12 pp.]
ISSN: 0961-9534

Financiación: info:eu-repo/grantAgreement/ES/DGA/T22-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN PRE2021-09794
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2020-113809RB-C31
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2023-147861OB-C21
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Fecha de embargo : 2027-03-27
Exportado de SIDERAL (2025-10-17-14:13:48)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Ingeniería Química



 Registro creado el 2025-05-30, última modificación el 2025-10-17


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)