000160892 001__ 160892
000160892 005__ 20251017144558.0
000160892 0247_ $$2doi$$a10.1016/j.biombioe.2025.107834
000160892 0248_ $$2sideral$$a144105
000160892 037__ $$aART-2025-144105
000160892 041__ $$aeng
000160892 100__ $$aChaos-Hernández, D.$$uUniversidad de Zaragoza
000160892 245__ $$aFe-modified catalytic carbons for enhanced CO2 gasification: Influence of carbon source and operating conditions
000160892 260__ $$c2025
000160892 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160892 5203_ $$aIn this study, we present results of characterization and reactivity of Fe-doped carbonaceous materials during their catalytic gasification with CO2. The samples include carbons derived from the thermal treatment of lignocellulosic residues pine sawdust (PiDC) and almond shells (AlDC) and a commercial graphite (AG) used for comparison. Iron-supported samples (Fe/PiDC, Fe/AlDC, Fe/AGC) were prepared by impregnating the raw materials (pine sawdust, almond shells and graphite) with a Fe precursor, followed by thermal decomposition under a reducing atmosphere. Characterization results revealed that Fe incorporation significantly influences the textural properties of the resulting carbonaceous materials. Specifically, Fe doping increased defect density and surface roughness while reducing microporosity, particularly in biomass derived carbons, as the Fe content increased. Dynamic gasification tests demonstrated that Fe enhances the reaction rate and lowers the onset temperature. Optimal gasification performance was achieved with intermediate Fe loadings maximizing catalytic efficiency while preventing rapid deactivation of Fe nanoparticles. Within the temperature range of 850–950 °C, nearly complete gasification was achieved, with residual content minimized to 10 % for Fe(4.2 %wt)/AGC, 16 % for Fe(2.4 %wt)/PiDC and 13 % for Fe(3.2 %wt)/AlDC. However, higher Fe loadings and temperatures exceeding 900 °C led to accelerated Fe deactivation due to sintering and oxidation. At CO2 concentrations below 8.3 %, these adverse effects were mitigated, optimizing the gasification rate. These findings underscore the critical interplay between Fe dispersion, carbon structure and gasification conditions, offering valuable insights for designing efficient Fe-based catalytic systems for CO2 valorization in sustainable energy applications.
000160892 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN PRE2021-09794$$9info:eu-repo/grantAgreement/ES/MICIU/PID2020-113809RB-C31$$9info:eu-repo/grantAgreement/ES/MICIU/PID2023-147861OB-C21
000160892 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000160892 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000160892 700__ $$0(orcid)0000-0001-6360-4475$$aLatorre, N.$$uUniversidad de Zaragoza
000160892 700__ $$aTarifa, P.$$uUniversidad de Zaragoza
000160892 700__ $$0(orcid)0000-0002-2363-2735$$aRomeo, E.$$uUniversidad de Zaragoza
000160892 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, A.$$uUniversidad de Zaragoza
000160892 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000160892 773__ $$g197 (2025), 107834 [12 pp.]$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000160892 8564_ $$s3661083$$uhttps://zaguan.unizar.es/record/160892/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-03-27
000160892 8564_ $$s1815870$$uhttps://zaguan.unizar.es/record/160892/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-03-27
000160892 909CO $$ooai:zaguan.unizar.es:160892$$particulos$$pdriver
000160892 951__ $$a2025-10-17-14:13:48
000160892 980__ $$aARTICLE