Automated vision-based assistance tools in bronchoscopy: stenosis severity estimation

Tomasini, Clara (Universidad de Zaragoza) ; Rodriguez-Puigvert, Javier (Universidad de Zaragoza) ; Polanco, Dinora ; Viñuales, Manuel (Universidad de Zaragoza) ; Riazuelo, Luis (Universidad de Zaragoza) ; Murillo, Ana C. (Universidad de Zaragoza)
Automated vision-based assistance tools in bronchoscopy: stenosis severity estimation
Financiación H2020 / H2020 Funds
Resumen: Purpose
Subglottic stenosis refers to the narrowing of the subglottis, the airway between the vocal cords and the trachea. Its severity is typically evaluated by estimating the percentage of obstructed airway. This estimation can be obtained from CT data or through visual inspection by experts exploring the region. However, visual inspections are inherently subjective, leading to less consistent and robust diagnoses. No public methods or datasets are currently available for automated evaluation of this condition from bronchoscopy video.
Methods
We propose a pipeline for automated subglottic stenosis severity estimation during the bronchoscopy exploration, without requiring the physician to traverse the stenosed region. Our approach exploits the physical effect of illumination decline in endoscopy to segment and track the lumen and obtain a 3D model of the airway. This 3D model is obtained from a single frame and is used to measure the airway narrowing.
Results
Our pipeline is the first to enable automated and robust subglottic stenosis severity measurement using bronchoscopy images. The results show consistency with ground-truth estimations from CT scans and expert estimations and reliable repeatability across multiple estimations on the same patient. Our evaluation is performed on our new Subglottic Stenosis Dataset of real bronchoscopy procedures data.
Conclusion
We demonstrate how to automate evaluation of subglottic stenosis severity using only bronchoscopy. Our approach can assist with and shorten diagnosis and monitoring procedures, with automated and repeatable estimations and less exploration time, and save radiation exposure to patients as no CT is required. Additionally, we release the first public benchmark for subglottic stenosis severity assessment.

Idioma: Inglés
DOI: 10.1007/s11548-025-03398-x
Año: 2025
Publicado en: International Journal of Computer Assisted Radiology and Surgery (2025), [8 p.]
ISSN: 1861-6429

Financiación: info:eu-repo/grantAgreement/ES/DGA/T45-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/863146/EU/EndoMapper: Real-time mapping from endoscopic video/EndoMapper
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:19:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Máster Universitario en Ingeniería de Sistemas y Automática
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos
Artículos > Artículos por área > Medicina



 Registro creado el 2025-06-05, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)