Resumen: Normal numbers were introduced by Borel and later proven to be a weak notion of algorithmic randomness. We introduce here a natural relativization of normality based on generalized number representation systems. We explore the concepts of supernormal numbers that correspond to semicomputable relativizations, and that of highly normal numbers in terms of computable ones. We prove several properties of these new randomness concepts. Both supernormality and high normality generalize Borel absolute normality. Supernormality is strictly between 2-randomness and effective dimension 1, while high normality corresponds exactly to sequences of computable dimension 1 providing a more natural characterization of this class. Idioma: Inglés DOI: 10.1007/s00224-025-10227-w Año: 2025 Publicado en: THEORY OF COMPUTING SYSTEMS 69, 3 (2025), [16 pp.] ISSN: 1432-4350 Financiación: info:eu-repo/grantAgreement/ES/DGA/T64-20R Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104358RB-I00 Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-138703OB-I00 Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)