Normality, Relativization, and Randomness
Resumen: Normal numbers were introduced by Borel and later proven to be a weak notion of algorithmic randomness. We introduce here a natural relativization of normality based on generalized number representation systems. We explore the concepts of supernormal numbers that correspond to semicomputable relativizations, and that of highly normal numbers in terms of computable ones. We prove several properties of these new randomness concepts. Both supernormality and high normality generalize Borel absolute normality. Supernormality is strictly between 2-randomness and effective dimension 1, while high normality corresponds exactly to sequences of computable dimension 1 providing a more natural characterization of this class.
Idioma: Inglés
DOI: 10.1007/s00224-025-10227-w
Año: 2025
Publicado en: THEORY OF COMPUTING SYSTEMS 69, 3 (2025), [16 pp.]
ISSN: 1432-4350

Financiación: info:eu-repo/grantAgreement/ES/DGA/T64-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104358RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-138703OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-10-17-14:13:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2025-07-22, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)