Low-storage exponentially fitted explicit Runge-Kutta methods
Resumen: In this paper, we study explicit Runge-Kutta (RK) methods for solving high-dimensional systems of ordinary differential equations (ODEs), with oscillatory or periodic solutions, that can be implemented with a few memory registers. We will refer to these schemes as Low-Storage Exponentially Fitted explicit Runge-Kutta methods (LSEFRK).
In order to obtain them, we first study second-order and third-order low-storage (LS) schemes that can be implemented with two memory registers per step of the van der Houwen- and Williamson-type. Next, we construct optimal LSEFRK methods by imposing exponential fitting conditions along with accuracy and stability properties. In this way, new optimal three-stage third-order and five-stage fourth-order LSEFRK schemes are constructed for each type of LS method.
The performance of these new schemes is tested by solving some high-dimensional differential systems with periodic solutions. Comparison with other non-LS exponentially fitted and low-storage non-EF RK methods from the literature shows that the new LSEFRK schemes outperform the efficiency of RK methods that only satisfy either the LS or the EF condition.

Idioma: Inglés
DOI: 10.1016/j.apnum.2025.06.017
Año: 2025
Publicado en: APPLIED NUMERICAL MATHEMATICS 217 (2025), 372-389
ISSN: 0168-9274

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-10-17-14:25:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2025-07-22, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)